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Linear x-ray dichroism of cadmium sulphide with wurtzite 
and zincblende structures 

C Levelutt, Ph Sainctavit, A Ramos and J Petiau 
Laboratoire de Min6ralogie Cristallographie, CNRS URA9, Universites Paris 6 et 7.4 Place 
Jussieu, 75252 Paris a d e x  OS. France 

Received 19 October 1994 

Abstract A comparison is made between x-ray absorption spectra al the sulphur K edge for 
CdS in wurtzite and nncblende shucfures. Differences between the polarization dependences 
of the x-ray spectra are expected due to the differences in symmetry for the two modifications. 
Multiple-scattering calculations in both smc~uces ax compared to published speara and allow 
us to interpret a strong dichroic effect in the wunzite shudure. The intensity of a specific 
resonance is related to the middle-range order around sulphur atoms and potential applications 
of this fingerprint analysis are proposed. 

1. Introduction 

CdS doped glasses-and more generally many composites made of small semicondudtor 
particles embedded in an insulating glass matrix-have recently been extensively studied, 
because of the reactivated interest in quantum confined semiconductors. This interest in 
spatial confinement of exciton or 'free carriers in one or more dimensions is motivated 
both by fundamental factors and for potential applications in non-linear optical devices. 
Three-dimensional confinement (quantum dots) can be produced in different solid dielectric 
matrices (glass, polymer, gel). The optical properties of such quantum dots differ from those 
of bulk material: they show discrete, large-molecular-like electronic states that shift towards 
higher energy with smaller particle sizes, leading to a blue shift of the optical absorption 
and large third-order susceptibility [l]. 

The average size of crystallites grown by diffusion~controlled techniques can cover a 
wide range of values, from several micrometres down to a few Angstroms, but the size 
distribution and quality of the interface with the dielectric differ from case to case. Only 
crystallites of &VI and I-VI1 have been grown on glasses [Z]. After the semiconductor 
clusters have grown beyond the nucleation stage, they acquire the crystalline structure and 
the stoichiometry of the bulk. For CdS, which  can^ be obtained in the wurtzite or the 
zincblende structure, the nanocrystalline can a priori adopt either of the two structures. 
High-resolution transmission electron microscopy on CdS commercial glasses evidenced 
only wurtzite structure crystallites in the 1.5-10 nm range [3] while other studies attribute 
zincblende structure to crystallites smaller than 10 nm [4]. Other studies devoted to CdS 
in colloids indicate blende structure for small sizes (below 1-2 nm) and wurtzite for larger 
crystallites (greater than 5 om) [5,6]. For CdS doped materials, the shift of the exciton is 
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pronounced for crystallites smaller than 6 nm. In this range of sizes, the crystallite structure 
is not well known and characterization by x-ray diffraction or high-resolution transmission 
electron microscopy is difficult. In this paper we show by multiplescattering calculations 
that x-ray absorption spectroscopy is the suitable method to address this problem. Indeed 
although the local organization is very similar in both zincblende and wurtzite structures it 
is possible by a detailed examination of the polarization dependence of the absorption cross- 
sections to assign features to medium-range order (around 10 A) and then to differentiate 
the two phases. 

The aim of this paper is to exhibit the origin of dichroism and to discuss theoretically 
its importance. In the second section we outline the similarities and differences between the 
two modifications in which CdS can crystallize. The third section presents the theoretical 
background of multiple-scattering calculations with special attention to the questions of 
potential construction, symmeby and dichroism. The fourth section is devoted to the 
calculations of the isotropic spectra and to comparison with the experimental data, from 
which we infer the middle-range order information that can be extracted from x-ray 
absorption spectroscopy. In the fifth section the dichroic information is used to confirm 
the theory developed in the preceding section and the sixth section is a short conclusion. 

2. Cadmium sulphide phases 

CdS exists in two modifications with large similarities: zincblende and wurtzite. The 
zincblende structure can be described as two face centred cubic sublattices (one anionic and 
one cationic sublattice) shifted by ($, $, $) from one another [7]. The wumite structure is 
constituted by two hexagonal lattices (one anionic and one cationic sublattice) shifted by 
(0, 0, U) [71; U is a free parameter of the wurtzite structure and has the value 0.377 for CdS 
[8]. There exists an 'ideal' wurtzite structure where the hexagonal lattices are two compact 
hexagonal lattices (c/a = & / 2 4  with U = 2 [7]. In both structures, the coordination 
shell of the anion is made up of four cations in tetrahedral symmetry and the second- 
neighbouring shell is made up of 12 anions. The electronic properties of the two phases 
are also rather similar: if the Brillouin zones are folded according to the axes of higher 
symmetry it can be shown that there exists a correspondence between the k vectors of the 
two Brillouin zones [9]. If the band structures are compared by using this correspondence, 
they are similar in shape, bandwidth and band gap [IO]. 

X-ray absorption spectra at the sulphur K edge have been measured by Sugiura on 
powders for the two modifications [ll]. It is found that the spectra are very similar. In 
the case of powder spectra, there is an angular averaging of the crystal orientations and 
no angular dependence can exist. Moreover since the first two neighbouring shells are for 
the two structures similar in nature and number but different for the angular arrangement 
of the second shell, any difference in the isotropic spectra can find two possible origins: a 
multiple-scattering process of higher order than single scattering in the first two shells or a 
multiple-scattering process (single scattering is included in multiple scattering) originating 
from beyond the second shell of neighbours. Both hypotheses lead to slight changes in the 
cross-section, as confirmed by experiment. 

However, x-ray absorption performed on single crystals is a symmetry sensitive 
technique that should give different results for the two modifications of CdS. X-ray 
absorption spectra probe selectively any final states whose symmetries are determined by 
the electric dipole selection rules applied to the initial state. Indeed in the electric dipole 
approximation (valid at Kedges for elements with 2 e 50 [12]) the absorption cross-section 
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transforms under the action of rotations as a tensor of rank two [13]. For a crystal with cubic 
symmetry such as zinchlende, there is no dependence of the x-ray absorption spectrum on 
the direction of polarization [14]. On the other hand, in the case of the wurtzite structure, 
the orientation group of the wurtzite space group is a hexagonal point group. In this case it 
has been shown that x-ray absorption spectra exhibit a dichroic dependence on the direction 
of the polarization vector. Then large differences are expected to occur for x-ray absorption 
spectra registered on single crystals with linear polarization. 

3. Theoretical background 

The x-ray absorption spectra have been calculated in the framework of the multiple- 
scattering method. The technique has already been extensively presented in numerous papers 
and its application to the case of~x-ray absorption spectroscopy is the fruit of the pioneering 
work of J B Pendry and C R Natoli. There is no need to give much detail about the 
calculations since the essentials can be found elsewhere [15,16]. Nevertheless we present 
three important points of the calculation: the construction of the potential, the reduction of 
the angular basis to a symmetrized one and the dichroic formalism. The potential is the 
central point in any multiple-scattering calculation and we shall give a precise description 
of its construction. The reduction of the angular basis set to a symmemzed basis set does 
not change the physics of the calculations except for the fact that, due to the large reduction 
of the secular determinant, it makes the calculations tractable for large clusters and large 
orbital momentum: this is not an easy matter and needs to be described in detail. 

Theoretical calculations were performed for CdS at the K edge of sulphur with the 
multiple-scattering wave code developed by Natoli and coworkers, using the ‘extended 
continuum’ method [15,16]. In this method advantage is taken of the fact that the electronic 
contribution to the cross-section can be fully separated from the geometrical part. The 
method~is a real space method, where the absorption is calculated for a finite cluster of 
atoms. The absorbing atom is at the centre of the cluster and the cluster is constituted of 
the neighbouring shells around the absorbing atom. A shell is constituted of all the atoms 
at a same distance from the absorbing atom. The local point group of the absorbing sulphur 
atom in the cluster is the same as the local point group of the sulphur sites in the crystal. The 
absorption cross-section is proportional to the probability of transition from one core state 
to some continuum states and is given explicitly by the Fermi golden rule. The continuum 
states are expressed on the harmonic representation, which is a complete set of solutions of 
the Schrodinger equation. In this basis the cross-section can be expressed as 

where CY is the fine-structure constant, ho is the photon energy, k is the quantum momenturn 
of the photoelectron such that h2k2/2m = hw - Ej.  Qi is a solution of the Schrodinger 
equation for the initial state of binding energy Ej  and E .  r is the interaction Hamiltonian in 
the electric dipole approximation. ( + ~ , k )  is a complete set of solutions of the Schrodinger 
equation; it is covered by’k, which is a continuous index, and by a discrete compound index 
L = (Z, m). The coefficient 2mk/nhz~finds its origin in the fact that the energy is expressed 
in Rydberg and k in atomic units so that E = kZ and that the partial wave functions +L.I;(T) 

have been normalized to one state per Rydberg: Je: J,j3 . @ ~ , . k ( r )  d r  dk = SL,L, (6 
stands for the Kronecker index) where K ,  and ~2 are chosen so that ( ~ 2 ) ’  - ( ~ 1 ) ’  = 1. 
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3.1. Construction of the potential 

For a given cluster we have to calculate the initial state and the complete set of final state 
wave functions. The initial state wave function 'is calculated by solving the Schrodinger 
equation in a spherical potential centred on the absorbing atom. The radius of the atomic 
sphere is somewhat arbitrarily determined and is usually set by following, the so-called 
Norman prescriptions [17]. The Coulomb part of the potential is the atomic potential 
calculated from the self-consistent field (se)  atomic wave functions tabulated by Clementi 
and Roetti [NI. An X - a  exchange potential is added to this Coulomb potential [I91 where 
the a parameter is the one recommended by Schwartz [20]. For a 1s state the radial 
Schrodinger equation is solved numerically for the experimental binding energy (2472 eV 
for the K edge of sulphur). It is checked that the radial wave function does not exhibit any 
divergence inside the muffin tin sphere of the absorbing atom due to a misadjustment of the 
binding energy. The 1s radial wave function of sulphur is not very sensitive to variations 
of the potential and it has been found that it does not lead to any relevant variation in the 
calculated spectra. 

For the calculation of the final state wave functions, we apply the theory of multiple 
scattering in a muffin tin  potential.^^ Electronic atomic densities are calculated from self- 
consistent atomic potentials given by Clementi and Roetti [18]. The potential of the 
excited state is supposed to be a screened and relaxed potential: we select the 2 + 1 
atomic orbitals for the absorbing atom, remove a 1s electron (relaxation) and add an extra 
electron on the outer orbital to mimic screening of the hole. Around each atom, the tails of 
the electronic densities from the neighbouring atoms are superimposed on the SCF atomic 
electronic densities. The electronic density around each atom is spherically averaged and the 
Poisson equation is solved to produce the Coulomb part of the potential. To the Coulomb 
potential an exchange potential is added. It is an X-or potential given as a functional of 
the density previously calculated with the a parameter defined in the final state as for the 
initial state [ZO]. An energy dependent potential such as the complex Hedin-Lundqvist 
exchange and correlation potentials has been also tested and we do not present these results 
since calculations with the X-u or Hedin-Lundqvist potential gave very similar spectra in 
the first 10 eV above the edge [ZI]. This could be expected from the fact that the Hedin- 
Lundqvist potential is very similar to X - z  fork - 0. Around each atom an atomic sphere is 
determined by fixing an atomic radius by the Norman criterion [17]: the charge enclosed in 
the atomic spheres has to be proportional to the atomic number 2 of the atom enclosed and 
no overlap is considered. Inside each sphere the spherical part of the molecular potential 
(Coulomb and exchange potentials) is made spherically symmetric. 

The cluster is surrounded by an outer sphere, which is the smallest sphere containing 
all the atomic spheres. Outside the outer sphere the potential is set to zero. Inside the outer 
sphere, we define the interstitial region as the region outside any atom and the potential in 
this region is set constant and equal to its volumic average. Since the cluster is usually 
large we consider that the net charge of the cluster is zero and no artificial charge is put on 
the surface of the outer sphere. 

3.2. The symmetrized basis 

We consider a cluster of N atoms, where the absorbing atom is at the origin. Inside each 
sphere the potential is spherically symmetric and the Schdinger equation can be solved 
numerically for each partial wave @L.x(r). In the atomic sphere of the absorbing atom we 
can write: 

* L . k ( r )  = CL,(L)Rf+)YL,(i) 
L' 
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where Y',(?) are spherical harmonics and Rl,(r) is the numerical solution regular at the 
origin of the radial Schrodinger equation. .C',(L) are a collection of parameters necessary 
to ensure the continuity of @L.x(r) and its first derivative. 

In the interstitial region the potential is constant but its geometry is intricate. In a 
constant potential, any combination of spherical Bessel functions and spherical Neumann 
functions is solution of the Schrodinger equation. We consider that each function $',k(r) 
in the interstitial region can be expressed as 

$ L , k ( r )  = jf,(kr)YL,(F) - i B ~ , ( L ) ~ ~ h f , ( ~ r ~ ) Y ' , ( F " )  
"L' 

where jp(kr) are spherical Bessel functions centred on the absorbing atom and ht,(kr,,) 
are Hankel functions centred at atomic site n; f: = sin 8; exp(6;) where 6; are the atomic 
scattering phase shifts of the atom n. In the summation n runs from one to N (total number 
of atoms in the cluster) and 1' from zero to infinity. 

The parameters B;f,(L) are determined by imposing continuity conditions for the partial 
wave $ L , k ( r )  and its, first derivative at the border of the atomic spheres. In doing so 
the normalized partial wave $ L . k ( r )  is exactly determined inside the atomic sphere of the 
absorbing atom. The cross-section is then a sum of terms of the type l(@~,& : rl&)I2 
where the integral is only to be performed inside the atomic sphere of the absorbing atom 
since the radial part of @I(?-) is almost zero if r is larger than a few tenths of an Angstrom. 

Inside the atomic spheres and in the interstitial region, the angular basis set is the~set 
of spherical harmonics YL(?). In all the expressions above there is a summation up to 
infinity over the discrete compound index L = ( I ,  m). In the calculations, the summation 
is truncated to a certain I,, whose value is determined by the rule of thumb I,, > R,n,,.k. 
Indeed by analogy with jf(kr),  which is negligible for kr < m, we assume that 
the d i d  wave function solution of the radial Schrodinger equation in one specific.atomic 
sphere will behave in the same way. Then there is no need to extend the summation beyond 
I,, since the solution R and the corresponding phase shift are almost zero. Each function 
$',k(r) is extended on a finite set of basis functions that are the spherical harmonics centred 
on the different atoms for I = 0 up to I = Z,,,,. If every sphere has the same I,, there 
are N(Z" + 1)2 different angular functions. It can be easily shown that to satisfy the 
multiple-scattering equations the coefficients B;,(L) have to satisfy the following vectorial 
equations: 

B(L)  = [T-' - G]- 'J (L)  

and 

B ( L )  = - C ( L )  
~~ 

where the vectors B ( L )  and C(L) are defined by [B(L)], = B&) and [C(L)I, = C&) 
and the matrix T is the diagonal matrix defined by = 6.,,..Sf.,,.S,.,~,,f~ with the 
compound index 01 = [n': (Z', m')). The [Cl,, matrix, also called the propagator, and the 
[ J ] ,  vector are related to the translation operator in the harmonic representation. These 
are geometric quantities independent of the potential, whose calculation is tedious but 
straightforward for any cluster geometry. The translation operator is an irreducible tensor 
of rank one of the group of rotations SO(3) [22,23]. It then transforms like the totally 
symmetric irreducible representation of any point group. 
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If g is the local point group that leaves the cluster invariant, it can be shown that 
the matrices associated with the transformation of the N(Z,, + 1)' angular basis functions 
(spherical harmonics) under the operations of the group g constitute a representation of 
g with the dimension iV(lma + 1)*. This representation, labelled r, can be decomposed 
into a sum of irreducible representations: r = e i n i r i  where r; is the ith irreducible 
representation of g ,  which appears n; times in the decomposition of r. There is a unitary 
transformation that transforms the angular basis set [YL(F~)]  into a new basis set (@} in 
which each element transforms like one basis partner of an irrep of g. The new basis set is 
constructed by the use of the projection operators, associated with the irreps of g 1241. The 
new basis set can be labelled by three indices as follows: &i.m.u is the qth partner 
of the mth basis of irrep ri. The ranges of variation for the indices are 1 < q < d' where 
d' is the dimension of l?f and 1 < m < ni where ni is the multiplicity of I'i in r. If 0 is an 
irreducible tensor of rank one in S0(3) ,  the Wigner-Eckhart theorem for finite groups states 
that (@i,m.q[Ol@j,n,q) = Bi,jSq.p(rL I] 0 I[ ri). It can be shown that the [G],J matrix can 
be expressed as (@a[O1@~) with 01 = (i, m, q) where 0, the transitional operator for Hankel 
functions, is an irreducible tensor of rank one. In the basis [&,m,q} G is block diagonal if 
the functions [@;,m.q) are ordered by first running m, then q and then i. The dimension of 
the block is ni, the multiplicity of ri in the representation r. Moreover the submatrices 
related to any partner of one given representation are all the same. Since the transition 
matrix T is still diagonal in (r$j,m,q), the matrix [T-' - GI is block diagonal too and can 
be inverted by block there is no admixture of matrix elements related to different irreps or 
different partners of the same irrep. The case of wurtzite and zincblende is developed in 
the appendix. We want to point out that in the subset of symmetry allowed basis functions 
(the set of basis function belonging to the same irrep) the only parameters BZ,(L) present 
in the cross-section are those for which the corresponding basis is built of 1' = 1 spherical 
harmonics. Nevertheless the secular equation with the complete subset has to be calculated 
because [T-' -GI is only block diagonal for this subset. 

3.3. Linear dichroism 

The dependence of the x-ray absorption spectra on polarization direction in the case of 
linearly polarized light has been extensively detailed by Brouder [ 131. The local point 
group for the anionic and cationic sites is Td(43m) in the zincblende structure and C3" (3m) 
in the wurtzite structure. 

In symmetry T d ,  the electric dipole selection rule applied to a K shell gives that the 
only BL,(L) that need to be known are those for which the angular part transforms like one 
partner of the rs irrep: we have chosen those that transform like x (we use Koster notations 
for point group irreps) [Z]. In the case of zincblende the cross-section is isotropic and no 
polarization dependence exists. 

In symmetry C3". the electric dipole selection rules state that there are two groups of 
B',(L) that need to be known: the one for which the corresponding angular part transforms 
like rl and the one for which the corresponding angular part transforms like one partner of 
the two-dimensional irrep rs (we have chosen the ones that transform like x ) .  Two cross- 
sections are calculated separately, UL for the x polarization and q for the z polarization. 
In the wurtzite crystal, the absorption cross-section is dichroic and any spectrum can be 
expressed as a linear combination of the two spectra "11 and ui. The coefficients of the 
linear combination are geometric coefficients independent of the material and only related to 
the orientation of the polarization vector. This result is valid on the whole energy range of 
x-ray absorption spectra as long as the electric dipole approximation is valid. The absorption 
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cross-section for a polarization vector that makes an angle 9 with the ternary axis can be 
expressed by separating the isotropic and non-isotropic parts of the cross-section 1131: 

U(@) = cos' Bu,l + sin' 9uL 

or 

U(9) -  Uppowder - (1/&)(3cos26 - 1)Au 

where uppowder is the isotropic absorption cross-section for a powder spectrum and Au is the 
non-isotropic contribution: Upopawder = i(2u~ + 01,) and Au = (&/3)(u~ - uil). 

Figure 1. Experimental spectra recorded at the sulphur K edge by Sugiun [l I]  for CdS powders 
with zincblende and wuraite structures. 

4. Isotropic sulphur K edge spectra 

Sugiura has recorded spectra on CdS of both zincblende and wurtzite structures at the K 
edge of sulphur 1111 (figure 1). The two spectra are isotropic spectra that have been recorded 
on powder samples. They are much alike except for small differences: the B resonance 
 has a~ higher intensity in the wurtzite structure than in the zincblende structure and the D 
resonance is higher.for the zincblende SIructure than for the wurtzite structure. The relative 
positions of the B and C resonances for the two structures are strongly dependent on the 
normalization conditions chosen to compare the two experimental spectra and moreover the 
differences are small for the feature C. Then we consider that the only relevant important 
difference between zincblende and wurtzite isotropic spectra at the sulphur K edge is related 
to the intensity and energy of resonance D. This will be the central point of our discussion. 

The multiplescattering kalculations for CdS in the zincblende structure are pelformed 
with the crystal parameter a = 4.124 A [SI. For CdS in the wurtzite phase, we assume an 
ideal' wurtzite structure (U = f and c/a = &/22/2) with c = 6.735 A [7]. In doing so, L. 
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the coordination shell is a perfect tetrahedron of cadmium atoms and the second shell is 
made up of 12 sulphur atoms situated at exactly the same distance from the central sulphur 
atom. In wurtzite and in zincblende structures the first two shells are then constituted of the 
same number of atoms of the same nature and at the same distance although the angular 
distribution is different [26]. The zero of energy of the calculations is the vacuum level of 
the crystal. In CdS it is rather independent of the structure and located 10 eV higher in 
energy than the interstitial muffin tin potential. The calcuIated spectra are convoluted by 
a Lorentzian function whose width at half maximum is related to the effective mean free 
path of the photoelectron, which takes into account the experimental resolution (0.2 eV), 
the finite lifetime of the core hole (0.5 eV) and the inelastic scattering of the photoelectron 
with the electrons of the material. 

U.6 

--- 99 atoms, blende structure - 98 atoms. wumite structure 

In both structures, the main resonances are present for a two-shell cluster calculation 
(figure 2). However, the resonances show strong evolution in their positions, intensities 
and shapes when the size of the cluster is increased. We find that convergence is obtained 
for both structure calculations when the cluster size is around 100 atoms (figure 2). This 
corresponds to eight shells in zincblende with 99 atoms and a cluster diameter equal to 
18.5 A while in the wuttzite structure it is a 13-shell cluster (98 atoms) with diameter 
18.5 A. Although the cluster is large, it is possible to determine the specific contribution of 
the particular shells. Indeed a focusing effect is present when two neighbouring shells are 
collinear with the absorbing atom. Due to large forward scattering for any photoelectron 
energy, the contribution of a distant shell is enhanced by the relay of the intermediate one. 
This is what happens for the eighth shell of the zincblende cluster (12 sulphur atoms) that 
connibutes highly to the cross-section due to the collinearity with the second shell. In the 
wurtzite cluster the 13th shell (six sulphur atoms in the plane perpendicular to c) is collinear 
with six out of the 12 second neighbours and the focusing effect is less important than for 
zincblende on the isotropic spectrum although it is very strong for uL. 

' 
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In figure 2, the isotropic calculated spectra are almost the same for zincblende and 
wurtzite structures except for a few differences: the B resonance has a higher intensity 
for the wurtzite structure and the D resonance is much higher for the zincblende structure. 
For both structures, the experimental and calculated spectra presented in figures 1 and 2 
are quite similar for a large enough cluster (- 100-atom clusters). The main difference 
originates from the intensity of resonance A that is much higher in the experimental spectra 
for both phases than in the calculated spectra. 

0.6 

0.5 

0.4 

0.3 

0.2 

0. I 

0 

0.6 
zinc-blende structure , a) I 

- 13 shell cluster 
12 shell cluster 

A 

8 shell cluster 
7 sliell cluster 

0.5 

0.4 - 

0.3 

0.2 

A 

Figure 3. Calculated spectra at the sulphur K edge for CdS. (a) The dncblende SVUcture, for 
a seven-shell (87-atom) cluster and an eight-shell (99-atom) cluster. The shell added between 
Ule two calculations is constituted of 12 sulphur atoms at 8.25 8. from the absorbing atom. 
(b) Isompic spectra in the wunzite structure, for a 12-shell (%-atom) cluster and a 13-shell 
(98-atom) cluster. The added shell confains six sulphur atoms at 8.25 A from the absorbing 
atom. 

For the zincblende smcture, the addition of the eighth shell strongly enhances the D 
resonance (figure 3). For the wurtzite structure, the D resonance is also enhanced when 
the 13th shell is taken into account (figure 3). In both phases, the added shells (sulphur 
atoms at - 8.25 A) contribute to a focusing effect. Figure 4 shows the difference signal 
between the 13- and the 12-shell clusters in the wurtzite structure. For the difference 
process, the raw calculated spectra are subtracted without energy shift to take into account 
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any modifications of the zero energy. In doing so we do not introduce any adjustable 
parameter but are very sensitive to slight modifications (0.01 eV) of the interstitial muffin 
tin potential, which depends on the atomic nature of the cluster outer shell. This is the 
origin of the large non-physical derivative signal that is seen between -5 eV and 2 eV. In 
the energy region from 3 to 5 eV (resonance D) the addition of the 13th shell induces an 
enhancement of the D resonance. Although the previous derivative signal (from -5 eV to 
2 eV) is very sensitive to any energy shift, the difference signal at resonance D is broad 
and constant. By the difference method between the calculated spectra of wurtzite, we 
have pinned the importance of the eighth shell in the origin of the D resonance where 
collinearity and focusing effect are certainly of importance, but the types of path to which 
this shell is contributing in the scattering process are not clear and cannot be addressed by 
full multiple-scattering calculations. 

The difference between the eight- and seven-shell clusters in the zincblende structure is 
also plotted in figure 4 and similar conclusions relative to the influence of the eighth shell 
on the appearance of the D resonance can be drawn. This strongly expresses the fact that 
the isotropic spectra of the two phases are governed by the same laws. 

wurtzite : 13shell-12 shell - - - - -  zinc-blende : 8 shell-7 shell 0.06 

-0.02' 
-10 0 10 20 

Energy (eV) 
Figure 4. The difference signal between the isotropic specua for the 13-shell cluster and the 
12-shell cluster of the wurtzite structure. A comparison with the difference signal between the 
spectn. for the eight-shell cluster and the seven-shell cluster in the zincblende CdS. 

5. Dichroism at the sulphur K edge 

Figure 5 compares the difference signal for U,, between the 13- and the 12-shell clusters in 
the wurtzite structure and the difference signal for U, between the eight- and the seven-shell 
clusters in the zincblende structure. At the energy of resonance D there is no contribution 
to the difference signal for the wurtzite shucture. This originates from the fact that the six 
sulphur atoms of  the 13th shell are located in the plane perpendicular to the c axis. From 
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0.08 
Difference signal: o,, 

_.-_- zinc-blende : 8 shell-7 shell 
wurtzite: 13shell -12 shell (2) 

.Y.Y.t 

-10 . 0 10 20 30 

Energy (eV) 

Fiyre 5. The difference signal for .q between the 13- and 12.shell clusters in the wurtzite 
smcture. A comparison with the difference signal for a! between the spectra for the eight-shell 
cluster and the seven-shell duster in the zincblende structure. 

the very simplified theory of single scattering in the plane approximation [27], it can be 
inferred that the contribution to the cross-section due to the six sulphur atoms is zero since 
there is 90" between the polarization vector and the vector joining the absorbing atom to 
any of the sulphur atoms from the 13th shell. This argument can be refined to the case of 
full multiple-scattering calculations. The 13th shell is made~up of six sulphur atoms and 
64 angular basis functions can be constructed with the condition 0 < 1 < 3. For 1 > 3 
the phase shifts &e almost zero for photoelectron energy less than 10 eV as is the case for 
resonance D. For the calculation of U! the angular functions of the symmetrized basis set 
transform like the one-dimensional irrep rl of C3". There are six such basis functions for 
1 6 3 out of a total of 299 symmetrized basis functions for the whole 13-shell cluster: one 
with 1 = 1, two with 1 = 2 and three with 1 = 3. The inspection of the phase shifts Si 
shows that for 1 > 7. 8, is very close to zero. This means that the scattering efficiency of 
the 13th shell is low since the number of basis functions that cany the scattering amplitude 
tp is 1% of the total number of basis functions: the focusing effect is still present since it is 
a geometrical condition, but it is not efficient in the case of the polarization vector parallel 
to c. 

The difference between the eight- and seven-shell clusters in the zincblende structure is 
also plotted in figure 5. The equivalent of 611 is obviously uiso since zincblende is cubic and 
the conclusions of the previous section apply to this case: a focusing effect is responsible 
for an increase of the intensity of resonance D. 

Figure~6 shows the absorption cross-section when the polarization vector is along the x 
direction for a 13-shell cluster in the wurtzite structure. From geometrical considerations, 
one expects that resonance D is much 'increased by the adjunction of the 13th shell in the 
cluster. Following again simple but useful arguments based on single scattering in the plane 
wave approximation one can estimate the apparent number of the six planar atoms. It is 
given by N = cos2 6' where 6' is the angle between the polarization vector and the vector 
joining the central atom and any of the six neighbouring atoms. We find N = 9, which 
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Figure 6. The difference signal for 01 between the 13- and IZ-shell clusters in the wurtzite 
structure. A wmparison with the difference signal for 5~ between the spectra for the eight-shell 
cluster md the seven-shell cluster in the dncblende structure. 

means that the weight of the six atoms of the 13th shell in ul is 50% greater than it is 
in the isotropic spectrum. A careful look at the symmetrized basis set shows also that the 
shell contributes significantly to the cross-section: 21 angular functions transforming like 
the first partner of the two-dimensional irrep rs out of 521 basis functions: two for I = 0, 
five for 1 = 1, six for I = 2 and eight for 1 = 3. In the same way as for cq the phase shifts 
for 1 = 3 are small and only slightly contribute to the cross-section, but unlike the U,, case 
the contribution of the 13 basis functions for I < 2 is large (2.5% of the total basis set). 
Thus we find that our analysis clearly points out that resonance D mainly finds its origin in 
the 13th shell, whose influence is enhanced by collinearity. In the isotropic spectrum the 
resonance D is also enhanced by the presence of the 13th shell since c r ~  weights 67% of 
the isotropic spectrum. 

The difference signal for the x polarized cross-section between the 13- and the 12-shell 
clusters in the wurtzite structure is compared in figure 6 to the difference between the eight- 
and seven-shell clusters in the zincblende structure. The enhancement of the D resonance 
in the case of the wurtzite stmcture is a little more than three-quarters of the enhancement 
for the zincblende structure (if the areas of the peaks are measured). This is in complete 
agreement with the attribution of resonance D to the focusing effect. Indeed in zincblende 
there are 12 atoms in the eighth shell that can benefit from the focusing effect while in CTL 

of wurtzite the apparent number of atoms from the 13th shell is nine. 
Although in the wurtzite structure the 1 Ith shell (twelve sulphur atoms) is twice as large 

as the 13th shell and at a similar distance from the central atom (7.90 8, against 8.25 A), 
there is evidence from our calculations that it does not greatly contribute to any specific 
feature but only modifies the cross-section by a few percent. The origin of the effect is 
to be found in the large distance between the 11th shell and the central atom and in the 
absence of focusing geometry. 
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6. ,Conclusion 

In this paper we have addressed the important question of the determination of the 
geometrical environment of sulphur in either wurtzite or zincblende cadmium sulphide. 
We have shown that there exists a signature of the two phases that is present in the x- 
ray absorption spectra at the sulphur K edge. This signature is related to the intensity of 
resonance D, which is due to the presence of the eighth shell in the zincblende structure or 
to the 13th shell in the wurtzite structure. These two shells are constituted of sulphur atoms 
at 8.25 A, all collinear to the atoms of the second shell of neighbours. This D resonance is 
characteristic of a middle-range order and its intensity has been shown to be proportional 
to the number of atoms in the eighth or in the 13th shell. 

This finding receives two possible applications. Firstly it can be applied to the phase 
determination of large crystallites when other methods such as x-ray diffraction or high- 
resolution transmission electron microscopy are not tractable. This result is essential since 
E m s  cannot unambiguously distinguish between the two phases. Indeed although in the 
wurtzite phase the second shell of neighbours around sulphur atoms contains a cadmium 
atom, the contribution of this cadmium is very small due to a relatively small scattering 
amplitude in the intermediate energy range (3-6 A-'). 

Secondly if the phase (wurtzite or zincblende) of small crystallites can be determined, 
one can extract their sizes from x-ray absorption data. For small crystallites o f  CdS in 
silicate glasses, the intensity of resonance D in sulphur K edge spectra is characteristic of 
the atomic shell located at 8.25 A from the absorbing atom. One can use the intensity of D to. 
determine the proportion of sulphur atoms having one or several eighth or 13th neighbours. 
This can then be related to the size of the crystallites, if complementary information is 
known by other techniques (for example the shapes of the crystallites). ,High-resolution 
transmission electron microscopy [3] shows that the.crystallites,ha~e~exagonal shaps. If 
we consider a small hexagonal  crystallite^ of 8.25 A radius, there are seven atoms with six 
13th neighbours, and six atoms with two 13th neighbours in the section of the crystallite 
instead of 19 atoms with six 13th neighbours in a bulk crystal. So the intensity of the D 
resonance should be equal to half the intensity of the D resonance for a bulk crystal of 
wurtzite structure. 

Full multiple-scattering calculations are not the only way of extracting information 
from XAS data. Path analysis as developed by several authors [28,29] has proved to be very 
valuable for understanding middle-range order by a thorough multiple-scattering analysis 
of the EXUS region. Nevertheless it has also been shown that this approach could face 
divergence close to the edge for low-Z atoms such as sulphur or silicon atoms, which 
could prevent an analysis of the first empty states above the Fermi level. In such cases full 
multiplescattering calculations are found to be the proper method of investigation. 

 appendix. Basis symmetrization for zincblende and wurtzite structures 

In order to illustrate what has been said in the section on symmetry, we apply the 
symmetrization method to the case of the zincblende structure. In the zincblende crystal 
the local point group of the sulphur site is Td(43m). To Td correspond five irreps: two 
onedimensional irreps, one two-dimensional irrep and two three-dimensional irreps. Then 
it follows from the Wigner-Eckhart theorem~for finite groups that in the symmetrical basis 
[ q 5 ~ , ~ , , , ] ,  the matrix [T-' - GI is block diagonal with 10 blocks, where the block Hj is an 
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ni-dimensional matrix where ni is the multiplicity of rj in r. The matrix Hi appears di 
times where di is the dimension of irrep ri. 

0 

n 

For a K edge in Td symmetry, the initial state transforms like rl and the Hamiltonian 
interaction transforms like an irreducible tensor of F5 (we follow Koster notations). The 
dipole allowed final states have to transform like rs and it is sufficient to retain in the 
basis set the basis functions that transform like one given partner (usually the partner x )  of 
r5. The other basis functions can be discarded and the full matrix to invert is no longer 
[T-l -G] but [Hs]. Since the T I -  G] matrix is constituted of ten blocks and, for a large 
basis set, each block has more or less the same dimension, the dimension of matrix [Hs] is 
on average 10 times smaller than that of V-l -GI. This corresponds to a huge economy of 
time, since the inversion of matrix V-' - 01 varies as the cube of its dimension. We found 
that for large clusters and large I,, the dimension of H5 is around 15% of the dimension 
of G and the CPU time is divided by 400. By completely using the symmetry of the cluster 
it is then possible to perform calculations for large clusters (- 150 atoms) with an extended 
basis (Imax = 6) in reasonable times. 

The application of the symmetrization method to the case of the wurtzite structure is 
similar although somewhat more complicated due to the lower symmetry of the sulphur 
atomic site. In the wurtzite crystal the local point group of the sulphur site is C3,(3m). To 
C k  correspond three irreps: two irreps of dimension one and one of dimension two. Then 
it follows from the Wigner-Eckhart theorem for finite groups that in the symmetrized basis 
[(J~.,,,~], the matrix r-' -GI is block diagonal with four blocks. 

HI 0 
H2 

H3 
0 H3 

For a K edge in C3" symmetry, the initial state transforms like FI and the Hamiltonian 
interaction transforms like the irreducible tensors of r1 ( E  parallel to a) and r3 (E  

perpendicular to z). The dipole allowed final states have to transform like rl or r3 and 
the calculation can be divided into two parts. Firstly, when E is parallel to a, the basis 
functions are the functions that transform like rl and the matrix to invert is of the same 
size as HI, and secondly, when E is perpendicular to a, the basis functions are the functions 
that transform like one partner (usually x )  of r2 and the matrix to invert is of the same size 
as H2. The gain on the calculation time due to the basis reduction is not as important as 
for the case of zincblende but can be estimated as a factor of 20. 
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